Scott Woodbury-Stewart

GMAT OFFICIAL GUIDE PS – How many of the integers that satisfy the inequality…

How many of the integers that satisfy the inequality…

Solution:

Before diving into this problem we want to first analyze the given inequality:

(x+2)(x+3)/(x-2) ≥ 0

This means that (x+2)(x+3) divided by x-2 is equal to or greater than zero. This provides us with 3 options for the signs of the numerator and denominator to yield a final answer that is either positive or 0:

1) (+)/(+) = positive

2) (-)/(-) = positive

3) 0/any nonzero number = 0

The above options will allow the inequality to hold true. We must be strategic in the numbers that we test. The easiest course of action is to start with option 3. We know that when n = -2 or when n = -3, the numerator of our inequality, (x+2)(x+3), will be zero. Thus, we have found two integer values for x less than 5 that fulfill the inequality. Next let’s focus our attention on option 1.

Option 1 tells us that both the numerator and denominator of (x+2)(x+3)/(x-2), must be positive. We see that when x = 4 or x = 3, we have a positive numerator and a positive denominator. At this point we should notice that we have already found 4 values of x that fulfill the inequality and, at most (according to the answer choices), there could be 5. So let’s consider option 2 to see whether we can find any values for x that make both the numerator and denominator negative. To do this we concentrate on the denominator of the fraction, x-2. We can see right away that the only integers that will make “x – 2” negative are 1, 0, -1, -2, -3, -4, and so on. That is, if x is an integer less than 2, then the denominator will be negative. However, when plugging 1, 0, or -1, into the numerator, we see that the numerator will remain positive and thus the entire fraction will be a negative value. When we plug in -2 or -3 for x, the numerator is 0 and entire fraction is 0. (This is actually option 3 above and we have already included -2 and -3 as part of the solutions.) Lastly, when we plug in -4 or integers less than -4, the numerator will be again positive and thus the entire fraction will result in a negative value. So with this information we can sufficiently determine that there are only 4 integer values less than 5 that fulfill the inequality.

Answer: D