Jeff Miller

GMAT OFFICIAL GUIDE PS – If d = 1/(2³ x 5⁷) is expressed as a terminating decimal…

If d = 1/(2³*5⁷) is expressed as a terminating decimal…


Since actually dividing 1/(2^3*5^7) would be time consuming, we want to manipulate d so that we are working with a cleaner denominator. The easiest way to do that is to multiply d by a value that will produce a perfect power of 10 in the denominator. This means that the number of 2s in the denominator will equal the number of 5s in the denominator.

Thus, we can multiply 1/(2^3*5^7) by 2^4/2^4. This gives us:





We can stop here because we know that the 10,000,000 in the denominator means to move the decimal place after the 16 seven places to the left. The final value of d will be 0.0000016. Note that the division of 16 by 10,000,000 did not produce any additional non-zero digits. Thus d has 2 non-zero digits.

Answer: B