Is 4^(x + y) = 8^(10) ? (1) x – y = 9 (2) y/x = 1/4

Reading Time: < 1 minute

Last Updated on May 6, 2023

GMAT OFFICIAL GUIDE DS

Solution:

We need to determine whether 4^(x+y) = 8^10. We start by breaking down our two bases into prime factors.

4^(x+y) = (2^2)^(x+y) = 2^(2x+2y)

8^10 = (2^3)^10 = 2^30

We can now rephrase the question as:

Is 2^(2x+2y) = 2^30 ?

Because the bases are the same, we can drop them and set the exponents equal to each other. The question becomes:

Is 2x+2y = 30 ?

Is x + y = 15 ?

After simplifying the equation, we see that we need to determine whether the sum of x and y is equal to 15.

Statement One Alone:

x – y = 9

Knowing the difference of x and y is not the same as knowing the sum of x and y; thus, statement one is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:

y/x = ¼

When we cross multiply obtain:

4y = x

4y = x is not enough information to determine the value of x + y. Statement two alone is not sufficient. We can eliminate answer choice B.

Statements One and Two Together:

Using statements one and two we know the following:

x – y = 9 and 4y = x

Since 4y = x, we can substitute 4y for x into the equation x – y = 9 and we have:

4y – y = 9

3y = 9

y = 3

Since y = 3, x = 4(3) = 12.

Thus, x + y = 12 + 3 = 15. We can answer yes to the question. Both statements together are sufficient.

Answer: C

Share
Tweet
WhatsApp
Share