If y is an integer, then the least possible value of |23 – 5y| is…

Reading Time: < 1 minute

Last Updated on May 3, 2023

GMAT OFFICIAL GUIDE PS

Solution:

To solve this question, we must make sure we interpret it correctly. We are not finding the least possible value of y, but rather the least possible value of |23-5y| (the absolute value of 23 – 5y). Remember that the smallest value that can result from taking the absolute value is zero. Thus we need to make 23 – 5y as close to zero as possible.

We know that 5y is a multiple of 5, so let’s first look at the multiples of 5 closest to 23. We have “20” and “25”. Let’s subtract both of these from 23 and see which one produces the smallest result. When 5y = 20, y is 4 and when 5y = 25, y is 5. Let’s start with letting y = 4.

|23-5(4)|

|23-20|

|3| = 3

Next, let’s let y equal 5.

|23-5(5)|

|23-25|

|-2| = 2

We see that the smallest possible value of |23-5y| is 2.

Answer: B

Note: Another approach to solving this problem is to see what value of y makes the expression 23 – 5y equal to 0:

23 – 5y = 0

23 = 5y

y = 4.6

However, we know that y must be an integer, so we round y = 4.6 to y = 5.

We then plug the value 5 for y into the absolute value equation, as was done earlier, yielding the same answer of 2, which is answer choice B.

Share
Tweet
WhatsApp
Share