If n is a positive integer and the product of all integers…

Reading Time: < 1 minute

Last Updated on May 10, 2023

GMAT OFFICIAL GUIDE PS

Solution:

We are given that the product of all integers from 1 to n, inclusive, (i.e., n!) is a multiple of 990.

Thus, n! = 990 x k for some integer k.

Another way to visualize the given information is to say:

n!/990 must be an integer. Thus, n! must contain all the factors of 990.

Notice that 990 = 99 x 10 = 9 x 11 x 10. So in order for n!/990 to be an integer, n must at least be equal to 11, since 11! = 11 x 10 x 9 x … x 3 x 2 x 1.

Answer: B 

Share
Tweet
WhatsApp
Share