The average distance between the Sun and a certain…

Reading Time: 1 minute

Last Updated on May 3, 2023

GMAT OFFICIAL GUIDE PS

Solution:

This problem is a unit conversion with an added twist of scientific notation. We need to convert 2.3 x 10^14 inches to KILOMETERS. We are given that 1 kilometer is approximately 3.9 X 10^4 inches. We also should recognize that we are being asked which of the following is CLOSEST to the average distance between
the Sun and the planet, in Kilometers. Because we are being asked for an approximation, we can use some estimation here.

To convert 2.3 x 10^14 inches to kilometers, we need to multiply 2.3 x 10^14 inches by the ratio of:

1 km/(3.9 x 10^4 inches)

However, before doing this multiplication, it will make things easier to clean up each scientific notation expression. Let’s start with 2.3 x 10^14 inches.

2.3 x 10^14 inches is equivalent to 23 x 10^13 inches

Notice that because we turn 2.3 into 23, or move the decimal one place to the right, we have to then turn 10^14 into 10^13, or move the decimal one place to the LEFT to “counterbalance” the fact that we’ve moved the decimal one place to the right for 2.3.

Next we can adjust 3.9 x 10^4 inches. However, we can simply round this value up to 4 x 10^4 inches.

Since we’ve rounded 3.9 up to 4, let’s round 23 up to 24 also. That is, we are converting 24 x 10^13 inches into kilometers given that 1 km is approximately 4 x 10^4 inches:

(24 x 10^13 inches) x 1 km/(4 x 10^4 inches)

(24 x 10^13)/(4 x 10^4) km

We can break this work up into two separate calculations:

1) 24/4 = 6

2) 10^13/10^4 = 10^9

Thus, our answer is about 6 x 10^9 km.

We see that the closest answer is B.

Answer: B

Share
Tweet
WhatsApp
Share